머신러닝 인터뷰 실무 가이드

도서명:머신러닝 인터뷰 실무 가이드
저자/출판사:수잔 수 창/한빛미디어
쪽수:364쪽
출판일:2024-09-03
ISBN:9791169212397
목차
CHAPTER 01 머신러닝 직무와 인터뷰 프로세스
1.1 이 책의 개요
1.2 머신러닝과 데이터 사이언스 직책에 관한 간략한 역사
1.3 머신러닝 경험을 요구하는 직책
1.4 머신러닝 생애주기
______스타트업
______대규모 머신러닝 팀
1.5 머신러닝 직무의 세 가지 축
______머신러닝 알고리즘과 데이터 직관 역량: 적응 능력
______프로그래밍 및 소프트웨어 엔지니어링: 구현 능력
______업무 추진 및 의사소통 역량: 업무 완수 능력
______세 가지 축의 최소 요구 사항 충족시키기
1.6 머신러닝 역량 매트릭스
1.7 머신러닝 채용 인터뷰에 들어서며
1.8 머신러닝 채용 인터뷰 프로세스
______웹사이트나 구인 공고를 통해 지원하기
______웹사이트 또는 구인 게시판 지원 시 이력서 스크리닝
______추천을 통해 지원하기
______인터뷰 사전 체크리스트
______리크루터 스크리닝
______본격적인 인터뷰 과정 둘러보기
요약
CHAPTER 02 머신러닝 입사 지원과 이력서
2.1 채용 공고는 어디에 있을까?
2.2 머신러닝 채용 지원 가이드
______입사 지원서의 효율성
______채용 추천
______인맥 쌓기
2.3 머신러닝 이력서 가이드
______여러분의 경험을 목록으로 정리하세요
______이력서의 각 절에 대한 개요
______지원하는 직무에 맞춰 이력서 맞춤화하기
______최종 이력서 수정
2.4 채용 지원하기
______채용 공고 조사하기
______자신의 역량과 경험을 머신러닝 역량 매트릭스와 대조해보기
______채용 지원 이력 추적하기
2.5 기타 채용 지원서 자료, 수료증, 그리고 FAQ
______프로젝트 포트폴리오가 필요할까요?
______온라인 수료증이 도움이 될까요?
______FAQ: 이력서는 몇 페이지가 적당할까요?
______ATS(후보자 추적 시스템)에 맞춰서 이력서 포맷을 조정해야 할까요?
2.6 다음 단계
______채용 공고 찾아보기
______목표 직무와 내 역량 사이의 격차 식별하기
요약
CHAPTER 03 기술 인터뷰: 머신러닝 알고리즘
3.1 머신러닝 알고리즘 기술 인터뷰 개요
3.2 통계적 기법 및 기초적 기법
______독립변수 및 종속변수 요약
______모델 정의
______선형 회귀 요약
______학습/테스트 세트 분할 정의
______모델 과소적합과 과적합 정의
______정규화 요약
______기초적인 기법에 관한 인터뷰 문제 예제
3.3 지도 학습, 비지도 학습, 강화 학습
______레이블이 지정된 데이터 정의하기
______지도 학습 요약
______비지도 학습 정의
______준지도 학습 및 자기 지도 학습 요약
______강화 학습 요약
______지도 학습과 비지도 학습에 관한 인터뷰 문제 예제
3.4 자연어 처리(NLP) 알고리즘
______NLP 기본 개념 요약
______LSTM 신경망 요약
______트랜스포머 모델 요약
______BERT 모델 요약
______GPT 모델 요약
______더 멀리
______NLP에 관한 인터뷰 문제 예제
3.5 추천 시스템 알고리즘
______협업 필터링 요약
______명시적 및 암시적 평가 요약
______콘텐츠 기반 추천 시스템 요약
______사용자 기반/아이템 기반 vs 콘텐츠 기반 추천 시스템
______행렬 분해 요약
______추천 시스템에 관한 인터뷰 문제 예제
3.6 강화 학습 알고리즘
______강화 학습 에이전트 요약
______모델 기반 강화 학습 vs 비모델 강화 학습 요약
______값 기반의 강화 학습 vs 정책 기반 강화 학습 요약
______온-폴리시 강화 학습 vs 오프-폴리시 강화 학습 요약
______강화 학습에 관한 인터뷰 문제 예시
3.7 컴퓨터 비전 알고리즘
______대표적인 이미지 데이터 세트 요약
______합성곱 신경망(CNN) 요약
______전이 학습 요약
______생성형 적대 신경망 요약
______추가적인 컴퓨터 비전 활용 사례 요약
______이미지 인식에 관한 인터뷰 문제 예제
요약
CHAPTER 04 기술 인터뷰: 모델 학습 및 평가
4.1 머신러닝 문제 정의하기
4.2 데이터 전처리와 피처 엔지니어링
______데이터 획득 소개
______탐색적 데이터 분석 소개
______피처 엔지니어링 소개
______데이터 전처리와 피처 엔지니어링에 관한 인터뷰 문제 예제
4.3 모델 학습 프로세스
______모델 학습에서의 반복 과정
______머신러닝 과업 정의하기
______모델 선택 개요
______모델 학습 개요
______모델 선택과 학습에 관한 인터뷰 문제 예제
4.4 모델 평가
______대표적인 머신러닝 평가 지표 요약
______평가 지표에서의 트레이드오프
______오프라인 평가를 위한 기타 기법들
______모델 버전 관리
______모델 평가에 관한 인터뷰 문제 예제
요약
CHAPTER 05 기술 인터뷰: 코딩
5.1 바닥부터 시작하기: 파이썬을 모르는 사람을 위한 학습 로드맵
______이해하기 쉬운 책이나 강의 선택하기
______릿코드, 해커랭크 또는 선호하는 플랫폼에서 쉬운 문제 시작하기
______측정 가능한 목표를 설정하고 연습, 연습, 연습하기
______머신러닝 관련 파이썬 패키지 사용해보기
5.2 코딩 인터뷰 성공 팁
______소리 내어 생각하세요
______흐름을 제어하세요
______인터뷰어는 여러분을 도와줄 수 있습니다
______여러분의 환경을 최적화하세요
______인터뷰는 에너지가 필요합니다!
5.3 파이썬 코딩 인터뷰: 데이터 및 머신러닝 관련 문제들
______데이터 및 머신러닝 관련 인터뷰 문제 예제
______데이터 및 머신러닝 중심의 인터뷰에 관한 FAQ
______데이터 및 머신러닝 인터뷰 문제 자료
5.4 파이썬 코딩 인터뷰: 브레인티저 문제들
______브레인티저 프로그래밍 문제 패턴
______브레인티저 프로그래밍 문제 자료
5.5 SQL 코딩 인터뷰: 데이터 관련 문제
______SQL 코딩 인터뷰 문제 관련 자료
_5.6 코딩 인터뷰 준비 로드맵
_____코딩 인터뷰 로드맵 예시: 4주, 대학생
______코딩 인터뷰 로드맵 예시: 6개월, 커리어 전환
______코딩 인터뷰 로드맵: 여러분만의 로드맵을 만들어보세요!
요약
CHAPTER 06 기술 인터뷰: 모델 배포와 종단 간 머신러닝
6.1 모델 배포
______신입이 머신러닝 업계에서 겪는 주요 경험 격차
______데이터 사이언티스트나 머신러닝 엔지니어도 이걸 알아야 하나요?
______종단 간 머신러닝
______클라우드 환경과 로컬 환경
______모델 배포 개요
______알아두면 좋은 기타 도구
______온디바이스 머신러닝
______모델 학습 중심 직무를 위한 인터뷰
6.2 모델 모니터링
______모니터링 구축
______머신러닝 관련 모니터링 지표
6.3 클라우드 제공업체 개요
______GCP
______AWS
______마이크로소프트 애저
6.4 인터뷰를 위한 개발자 모범 사례
______버전 관리 시스템
______의존성 관리
______코드 리뷰
______테스트
6.5 기타 기술 인터뷰 구성 요소
______머신러닝 시스템 디자인 인터뷰
______심층 기술 인터뷰
______코딩 과제 팁
______프로덕트 센스Product Sense
______MLOps에 관한 인터뷰 질문 예시
요약
CHAPTER 07 행동 인터뷰
7.1 행동 인터뷰 질문과 응답
______행동 인터뷰 질문에 답할 때 STAR 기법을 사용하세요
______영웅의 여정 기법으로 답변을 강화하세요
______인터뷰어 관점에서 본 모범 사례와 피드백
7.2 대표적인 행동 인터뷰 질문과 추천 사항
______의사 소통 역량에 관한 질문들
______협업과 팀워크에 관한 질문들
______피드백에 대한 반응에 관한 질문들
______난관 대처와 새로운 역량 습득에 관한 질문들
______회사에 대한 질문들
______업무 프로젝트에 관한 질문들
______자유 형식 질문들
______행동 인터뷰 모범 사례
______관련 업무 경험이 없을 때 행동 인터뷰 질문에 답하는 방법
7.3 빅테크 회사 인터뷰를 위한 준비 예시
______아마존
______메타/페이스북
______알파벳/구글
______넷플릭스
요약
CHAPTER 08 모든 것을 하나로 묶기: 인터뷰 로드맵
8.1 인터뷰 준비 체크리스트
8.2 인터뷰 로드맵 템플릿
8.3 효율적인 인터뷰 준비
______더 나은 학습자가 되세요
______시간 관리와 책임
8.4 임포스터 신드롬
요약
CHAPTER 09 인터뷰 이후와 후속조치
9.1 인터뷰 이후의 단계
______인터뷰에서 기억나는 것들을 메모하기
______중요한 정보를 놓치지 마세요
______인터뷰어에게 감사 이메일을 보내야 할까요?
______감사 인사 템플릿
______인터뷰 후에 결과를 연락 받지 못할 경우 얼마나 기다렸다가 연락해야 할까요?
9.2 여러 인터뷰 사이에 해야 할 일들
______거절에 반응하는 방법
______거절 결과에 회신을 보낼 때 사용하는 템플릿
______입사 지원은 과정의 일부입니다
______이력서를 업데이트하고 맞춤화하며 변경 내용을 시험해보세요
9.3 입사 제****단계
______다른 진행 중인 인터뷰에 입사 제안을 받았다고 알리기
______입사 제****회신 기한이 매우 짧을 때 어떻게 해야 할까?
______입사 제****이해하기
9.4 새 머신러닝 직무의 첫 30/60/90일
______도메인 지식을 확보하세요
______코드와 친해지세요
______관계자들을 만나세요
______온보딩 문서를 개선하는 데 도움을 주세요
______여러분의 성과를 계속해서 추적하세요
요약