세상을 읽는 수학책
도서명:세상을 읽는 수학책
저자/출판사:사이토,다카시/북라이프
쪽수:280쪽
출판일:2022-09-27
ISBN:9791191013450
목차
프롤로그: 수학은 쓸모가 있다!
제1장 미분: 수학적 사고의 ‘ 꽃’을 철저히 활용한다
문과는 좌절에 빠지고 이과는 감동에 빠지는 미분│주식 투자 전문가는 어떻게 거품 붕괴를 예상할 수 있었나│특정 순간의 변화 추세를 나타내는 ‘접선의 기울기’│스포츠 지도자도 갖추어야 할 미분적 사고│일본인의 가슴에 제행무상을 새긴 ‘헤이케 곡선’│네 번째 예명으로 비로소 상승세를 탄 가수 이츠키 히로시│데이트의 ‘설렘 곡선’을 미분하라│미분 감각을 익히면 매 순간의 행복을 깨달을 수 있다│발전이 ‘정비례’로 이루어졌다면 인간 게놈 계획은 완성까지 700년│눈 깜짝할 사이에 추락한 나의 첼로 연주 실력│자전거와 생크림의 공통점│미분은 ‘특정 순간의 속도’를 알아내기 위해 태어났다│운동방정식 F=ma와 관성의 법칙│관성으로 움직일 수 없는 신입사원은 액셀을 힘차게 밟자│예능인 다모리의 관성과 가속도│하이데거라는 짐을 내려놓고 가속도를 올린 나│‘가속도가 0’인 교사는 좋은 수업을 하지 못한다│미분적 사고가 ‘교양인’의 최소 조건
제2장 함수: ‘f ’에서 태어나는 무한한 아이디어
가수 이노우에 요스이의 ‘재즈화’를 수학적으로 생각한다│변환성이 일정하지 않은 화가에게는 개성이 느껴지지 않는다│철학의 ‘관계주의’란 무엇일까?│흉내 내고 싶을 만큼 매력적인 ‘f ’의 위대함│프로듀서가 할 일은 가수의 ‘f ’를 간파하는 것│가수 이시카와 사유리와 화가 사에키 유조에게 맞는 ‘f ’는?│스타일이란 ‘일관된 변형 작용’이다│존 매켄로의 스타일을 완벽하게 복제하다│애플과 혼다의 변형 작용│구직을 할 때는 회사와 나의 ‘f ’의 상성이 중요하다│‘조직과 개인’의 화학 반응│국가와 종교도 ‘거대한 f ’│노래방이라는 ‘y’는 어떤 함수에서 나왔을까?│노래방과 프라모델의 공통점
제3장 좌표: x축과 y축으로 세상을 평가한다
한 철학자가 고안한 수학의 기본 도구│평면상의 ‘주소’는 숫자 두 개로 정해진다│좌표축으로 나뉘는 ‘사분면’│‘3점 슛 규칙’이라는 평가축이 낳은 슈퍼스타│‘평가는 창조다’│예전의 아이돌과 현재의 아이돌은 평가축이 다르다│‘맛없고 지저분한 가게’가 제1사분면에 들어가는 좌표축도 있다│어떻게 해야 제3사분면에서 제1사분면으로 갈 수 있을까?│늘 ‘x축’과 ‘y축’을 염두에 두자
제4장 확률: 무모한 선택을 막고 도전할 용기를 갖기 위해
문과생도 이미 사용하는 수학적 사고│주사위의 ‘기댓값’은?│룰렛에서 짝수가 나올 확률은 50퍼센트 미만│기댓값은 ‘무모한 선택’을 막아준다│‘여사건’이란 무엇일까?│‘무모’와 ‘무난’의 전환
제5장 집합: 뒤죽박죽인 머릿속을 깔끔하게 정리한다
수학을 이해하려면 국어가, 국어를 이해하려면 수학이 필요하다│‘또는’과 ‘또한’의 차이를 벤 다이어그램으로 이해한다│토론은 화이트보드에 벤 다이어그램을 그리면서 하자│‘차선책’을 찾아내는 벤 다이어그램 사용법
Column 1 인수분해: 괄호로 묶어 ‘정리하는 사고’
제6장 증명: 속지 않기 위한 논리력을 훈련한다
수학적 증명은 ‘생각하는 법’과 ‘말하는 법’의 훈련│유클리드 기하학의 ‘공리’란│전제가 틀리면 삼각형의 내각의 합도 180도가 아니다│고정 관념=선입견에서 벗어나는 현상학의 사고법│ 반증 가능성이 없으면 과학이 아니다│뉴턴을 뛰어넘은 아인슈타인의 이론
Column 2 서술형 문제: ‘풀이 과정’을 설명할 수 있으면 꼭 계산할 필요는 없다
제7장 벡터: 방향과 크기로 생각한다
벡터는 단순한 ‘화살표’가 아니다│밴드가 해산한 이유는 정말로 ‘방향성의 차이’ 때문일까?│노력의 벡터를 ‘분해’, ‘합성’해 본다
Column 3 절댓값: 에너지가 ‘미치는 폭’에 주목한다
에필로그: 왜 지금 수학적 사고가 필요한가