대용량 머신 러닝과 스파크
도서명:대용량 머신 러닝과 스파크
저자/출판사:레자울,카림,마헤디,카이저/에이콘출판
쪽수:560쪽
출판일:2018-07-16
ISBN:9791161751771
목차
1장. 스파크를 이용한 데이터 분석의 개요
__스파크 개요
____스파크의 기본 사항
____스파크의 장점
__스파크를 사용한 새로운 컴퓨팅 패러다임
____전통적인 분산 컴퓨팅
____코드에서 데이터로의 이동
____RDD: 새로운 컴퓨팅 패러다임
__스파크 에코시스템
____스파크 코어 엔진
____스파크 SQL
____데이터프레임과 데이터셋 통합
____스파크 스트리밍
____그래프 계산: GraphX
____머신 러닝과 스파크 ML 파이프라인
____통계 계산: 스파크R
__스파크 머신 러닝 라이브러리
____스파크를 이용한 머신 러닝
____스파크 MLlib
____스파크 ML
__스파크 설치와 시작하기
__종속성을 사용해 애플리케이션 패키징
__샘플 머신 러닝 애플리케이션 실행
____스파크 셸에서 스파크 애플리케이션 실행
____로컬 클러스터에서 스파크 애플리케이션 실행
____EC2 클러스터에서 스파크 애플리케이션 실행
__참고 문헌
__요약
2장. 머신 러닝 모범 사례
__머신 러닝이란?
____현대 문헌에서의 머신 러닝
____일반적인 머신 러닝 워크플로우
__머신 러닝 작업
____지도 학습
____비지도 학습
____강화 학습
____추천 시스템
____준지도 학습
__실제 머신 러닝 문제
____머신 러닝 클래스
____규칙 추출과 회귀
__가장 널리 사용하는 머신 러닝 문제
__스파크 대규모 머신 러닝 API
____스파크 머신 러닝 라이브러리
__실용적인 머신 러닝 우수 사례
____ML 애플리케이션 개발 전의 우수 사례
____ML 애플리케이션 개발 후 모범 사례
__애플리케이션에 알맞은 알고리즘 선택
____알고리즘을 선택할 때 고려 사항
____알고리즘을 선택할 때 데이터를 함께 고려하기
____널리 사용하는 ML 알고리즘에 대한 참고 사항
__요약
3장. 데이터 이해를 통한 문제 이해
__데이터 분석 및 준비
____데이터 준비 프로세스
__탄력적 분산 데이터셋의 기본사항
____데이터셋 읽기
____RDD로 사전 처리
____키와 값의 쌍으로 작업하기
____변환에 대한 추가 정보
__데이터셋 기본 사항
____데이터셋을 생성하기 위해 데이터셋 읽기
____데이터셋으로 사전 처리
____데이터셋 조작에 대한 추가 정보
____자바빈에서 데이터셋 생성
__문자열과 타입 클래스에서 데이터셋 생성
____RDD, DataFrame, Dataset 간의 비교
__스파크와 데이터 과학자 워크플로우
__스파크에 대해 좀 더 깊게 살펴보기
____공유 변수
__요약
4장. 피처 엔지니어링을 통한 지식 추출
__피처 엔지니어링의 최첨단 기술
____피처 추출 vs. 피처 선택
____피처 엔지니어링의 중요성
____피처 엔지니어링과 데이터 탐색
____피처 추출: 데이터에서 피처 생성
____피처 선택: 데이터에서 필터링 피처
__피처 엔지니어링의 모범 사례
____데이터 이해
____혁신적인 피처 추출 방법
__스파크로 피처 엔지니어링
____머신 러닝 파이프라인: 개요
____파이프라인: 스파크 ML 예제
____피처 변환, 추출, 선택
__고급 피처 엔지니어링
____피처 구성
____피처 학습
____피처 엔지니어링의 반복 프로세스
____딥러닝
__요약
5장. 예제로 보는 지도 및 비지도 학습
__머신 러닝 클래스
____지도 학습
__스파크를 이용한 지도 학습: 사례
____스파크를 이용한 항공기 지연 분석
__비지도 학습
____비지도 학습 사례
__추천 시스템
____스파크에서 협업 필터링
__고급 학습과 일반화
____지도 학습의 일반화
__요약
6장. 확장 가능한 머신 러닝 파이프라인 빌드
__스파크 머신 러닝 파이프라인 API
____데이터셋 추상화
____파이프라인
__스파크를 사용한 암 진단 파이프라인
____스파크를 사용한 유방암 진단 파이프라인
__스파크를 사용한 암 예후 파이프라인
____데이터셋 탐색
____스파크 ML/MLlib를 사용한 유방암 예후 파이프라인
__스파크 코어를 이용한 장바구니 분석
____배경
____동기
____데이터셋 탐색
____문제 설명
____스파크를 이용한 대규모 장바구니 분석
____스파크 코어를 사용한 알고리즘 솔루션
____SAMBA에서 올바른 매개변수의 튜닝과 설정
__스파크를 이용한 OCR 파이프라인
____데이터 탐색과 준비
____스파크 ML과 스파크 MLlib를 사용한 OCR 파이프라인
__스파크 MLlib와 ML을 사용한 토픽 모델링
____스파크 MLlib를 사용한 토픽 모델링
____확장성
__스파크를 사용한 신용 위험 분석 파이프라인
____신용 위험 분석이란? 왜 중요한가?
____스파크 ML을 이용한 신용 위험 분석 개발
____스파크 ML을 사용한 신용 위험 파이프라인
__ML 파이프라인 확장
____크기의 중요성
____크기 vs. 왜곡 고려 사항
____비용과 인프라
__조언 및 성능 고려 사항
__요약
7장. 머신 러닝 모델 튜닝
__머신 러닝 모델 튜닝에 대한 세부 사항
__모델 튜닝의 일반적인 문제
__머신 러닝 모델 평가
____회귀 모델 평가
____이진 분류 모델 평가
____멀티클래스 분류 모델 평가
____클러스터링 모델 평가
__유효성 검사 기술과 평가 기술
__머신 러닝 모델을 위한 매개변수 튜닝
____초매개변수 튜닝
____그리드 검색 매개변수 튜닝
____랜덤 검색 매개변수 튜닝
____교차 유효성 검사
__가설 테스트
____스파크 MLlib의 ChiSqTestResult를 사용한 가설 테스트
____스파크 MLlib Kolmogorov-Smirnov 테스트를 사용한 가설 테스트
____스파크 MLlib의 스트리밍 유의도 검정
__머신 러닝 모델 선택
____교차 검증 기술을 통한 모델 선택
____트레이닝 유효성 검사 분할을 통한 모델 선택
__요약
8장. 머신 러닝 모델 조정
__머신 러닝 모델 적용
____기술 개요
__ML 모델의 일반화
____일반화된 선형 회귀
____스파크를 사용한 일반화된 선형 회귀
__증분 알고리즘을 통한 적용
____증분 서포트 벡터 머신
____증분 신경망
____증분 베이지****네트워크
__ML 모델 재사용을 통한 적용
____문제 설명과 목적
____데이터 탐색
____심장 질환 예측 모델 개발
__동적 환경에서 머신 러닝
____온라인 학습
____통계 학습 모델
____적대 모델
__요약
9장. 스트리밍 및 그래픽 데이터를 사용한 고급 머신 러닝
__실시간 ML 파이프라인 개발
____비구조화된 텍스트 데이터로서 스트리밍 데이터 수집
__시계열과 소셜 네트워크 분석
____시계열 분석
____소셜 네트워크 분석
__스파크를 사용한 영화 추천
____스파크 MLlib를 사용한 모델 기반 영화 추천
__스트리밍에서 실시간 ML 파이프라인 개발
____트위터에서 실시간 트윗 데이터 수집
____8단계: 스트리밍 스위치 제어
__스파크를 사용한 토픽 모델링
__그래프 데이터와 준지도 그래프 기반 학습에 대한 ML 파이프라인
____GraphX 소개
__요약
10장. 외부 라이브러리를 이용한 설정 및 작업
__스파크가 포함된 서드파티 ML 라이브러리
__스파크 코어로 외부 라이브러리 사용
__클라우데라 Spark-TS를 사용한 시계열 분석
____시계열 데이터
____Spark-TS 설정
____TimeSeriesRDD
__RStudio로 스파크R 설정
__윈도우에서 하둡 런타임 설정
__요약