데이터 분석을 위한 SQL 레시피
도서명:데이터 분석을 위한 SQL 레시피
저자/출판사:가사키,나가토,다미야,나오토/한빛미디어
쪽수:600쪽
출판일:2018-04-01
ISBN:9791162240601
목차
1장 빅데이터 시대에 요구되는 분석력이란?
1강 데이터를 둘러싼 환경의 변화
1 접근 분석 도구의 등장
2 빅데이터의 등장
2강 여러 가지 과제
1 분석 담당자의 과제
2 엔지니어의 과제
3 분석 담당자와 엔지니어의 이해관계
2장 이 책에서 다루는 도구와 데이터
3강 시스템
1 PostgreSQL
2 Apache Hive
3 Amazon Redshift
4 Google BigQuery
5 SparkSQL
4강 데이터
1 데이터의 종류
2 업무 데이터
3 로그 데이터
4 두 데이터를 사용해서 생성되는 가치
3장 데이터 가공을 위한 SQL
5강 하나의 값 조작하기
1 코드 값을 레이블로 변경하기
2 URL에서 요소 추출하기
3 문자열을 배열로 분해하기
4 날짜와 타임스탬프 다루기
5 결손 값을 디폴트 값으로 대치하기
6강 여러 개의 값에 대한 조작
1 문자열 연결하기
2 여러 개의 값 비교하기
3 2개의 값 비율 계산하기
4 두 값의 거리 계산하기
5 날짜/시간 계산하기
6 IP 주소 다루기
7강 하나의 테이블에 대한 조작
1 그룹의 특징 잡기
2 그룹 내부의 순서
3 세로 기반 데이터를 가로 기반으로 변환하기
4 가로 기반 데이터를 세로 기반 데이터로 변환하기
8강 여러 개의 테이블 조작하기
1 여러 개의 테이블을 세로로 결합하기
2 여러 개의 테이블을 가로로 정렬하기
3 조건 플래그를 0과 1로 표현하기
4 계산한 테이블에 이름 붙여 재사용하기
5 유사 테이블 만들기
4장 매출을 파악하기 위한 데이터 추출
9강 시계열 기반으로 데이터 집계하기
1 날짜별 매출 집계하기
2 이동 평균을 사용한 날짜별 추이 보기
3 당월 매출 누계 구하기
4 월별 매출의 작대비 구하기
5 Z 차트로 업적의 추이 확인하기
6 매출을 파악할 때 중요 포인트
10강 다면적인 축을 사용해 데이터 집약하기
1 카테고리별 매출과 소계 계산하기
2 ABC 분석으로 잘 팔리는 상품 판별하기
3 팬 차트로 상품의 매출 증가율 확인하기
4 히스토그램으로 구매 가격대 집계하기
5장 사용자를 파악하기 위한 데이터 추출
11강 사용자 전체의 특징과 경향 찾기
1 사용자의 액션 수 집계하기
2 연령별 구분 집계하기
3 연령별 구분의 특징 추출하기
4 사용자의 방문 빈도 집계하기
5 벤 다이어그램으로 사용자 액션 집계하기
6 Decile 분석을 사용해 사용자를 10단계 그룹으로 나누기
7 RFM 분석으로 사용자를 3가지 관점의 그룹으로 나누기
12강 시계열에 따른 사용자 전체의 상태 변화 찾기
1 등록 수의 추이와 경향 보기
2 지속률과 정착률 산출하기
3 지속과 정착에 영향을 주는 액션 집계하기
4 액션 수에 따른 정착률 집계하기
5 사용 일수에 따른 정착률 집계하기
6 사용자의 잔존율 집계하기
7 방문 빈도를 기반으로 사용자 속성을 정의하고 집계하기
8 방문 종류를 기반으로 성장지수 집계하기
9 지표 개선 방법 익히기
13강 시계열에 따른 사용자의 개별적인 행동 분석하기
1 사용자의 액션 간격 집계하기
2 카트 추가 후에 구매했는지 파악하기
3 등록으로부터의 매출을 날짜별로 집계하기
6장 웹사이트에서의 행동을 파악하는 데이터 추출하기
14강 사이트 전체의 특징/경향 찾기
1 날짜별 방문자 수 / 방문 횟수 / 페이지 뷰 집계하기
2 페이지별 쿠키 / 방문 횟수 / 페이지 뷰 집계하기
3 유입원별로 방문 횟수 또는 CVR 집계하기
4 접근 요일, 시간대 파악하기
15강 사이트 내의 사용자 행동 파악하기
1 입구 페이지와 출구 페이지 파악하기
2 이탈률과 직귀율 계산하기
3 성과로 이어지는 페이지 파악하기
4 페이지 평가 산출하기
5 검색 조건들의 사용자 행동 가시화하기
6 폴아웃 리포트를 사용해 사용자 회유를 가시화하기
7 사이트 내부에서 사용자 흐름 파악하기
8 페이지 완독률 집계하기
9 사용자 행동 전체를 시각화하기
16강 입력 양식 최적화하기
1 오류율 집계하기
2 입력~확인~완료까지의 이동률 집계하기
3 입력 양식 직귀율 집계하기
4 오류가 발생하는 항목과 내용 집계하기
7장 데이터 활용의 정밀도를 높이는 분석 기술
17강 데이터를 조합해서 새로운 데이터 만들기
1 IP 주소를 기반으로 국가와 지역 보완하기
2 주말과 공휴일 판단하기
3 하루 집계 범위 변경하기
18강 이상값 검출하기
1 데이터 분산 계산하기
2 크롤러 제외하기
3 데이터 타당성 확인하기
4 특정 IP 주소에서의 접근 제외하기
19강 데이터 중복 검출하기
1 마스터 데이터의 중복 검출하기
2 로그 중복 검출하기
20강 여러 개의 데이터셋 비교하기
1 데이터의 차이 추출하기
2 두 순위의 유사도 계산하기
8장 데이터를 무기로 삼기 위한 분석 기술
21강 검색 기능 평가하기
1 NoMatch 비율과 키워드 집계하기
2 재검색 비율과 키워드 집계하기
3 재검색 키워드를 분류해서 집계하기
4 검색 이탈 비율과 키워드 집계하기
5 검색 키워드 관련 지표의 집계 효율화하기
6 검색 결과의 포괄성을 지표화하기
7 검색 결과의 타당성을 지표화하기
8 검색 결과 순위와 관련된 지표 계산하기
22강 데이터 마이닝
1 어소시에이션 분석
23강 추천
1 추천 시스템의 넓은 의미
2 특정 아이템에 흥미가 있는 사람이 함께 찾아보는 아이템 검색
3 당신을 위한 추천 상품
4 추천 시스템을 개선할 때의 포인트
5 출력할 때 포인트
6 추천과 관련한 지표
24강 점수 계산하기
1. 여러 값을 균형있게 조합해서 점수 계산하기
2 값의 범위가 다른 지표를 정규화해서 비교 가능한 상태로 만들기
3 각 데이터의 편차값 계산하기
4 거대한 숫자 지표를 직감적으로 이해하기 쉽게 가공하기
5 독자적인 점수 계산 방법을 정의해서 순위 작성하기
9장 지식을 행동으로 옮기기
25강 데이터 활용의 현장
1 데이터 활용 방법 생각하기
2 데이터와 관련한 등장 인물 이해하기
3 로그 형식 생각해보기
4 데이터를 활용하기 쉽게 상태 조정하기
5 데이터 분석 과정
6 분석을 위한 한 걸음 내딛기
7 상대방에 맞는 리포트 만들기
8 빅데이터 시대의 데이터 분석자